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1 Introduction and summary

Variants of the AdS/CFT correspondence, which provide gravity duals of non-relativistic

gauge theories, could potentially be of great importance in order to describe strongly

coupled, scale-invariant condensed matter systems. Examples of such systems are fermions

at unitarity and theories at Lifshitz-like fixed points.

The simplest proposals for gravity duals to non-relativistic theories were put forward

in [1–3]. One natural question that arises is, whether these spaces are homogeneous and

whether they are a comprehensive list of such backgrounds. In this note, we want to ad-

dress this question, and find an organizational principle to study duals to non-relativistic

theories as homogeneous spaces. The particular cosets involved in this construction are

rather non-standard, in that they do not generically yield symmetric spaces. We provide a

framework for studying such backgrounds and then demonstrate that under certain phys-

ical assumptions, the metrics found in [1–3] are unique. It will be interesting to extend

this to the supercosets for the super-Schrödinger algebras and study the corresponding

backgrounds for superstring theory.

We begin in section 2 by discussing the general theory of invariant metrics on cosets, in

particular focusing on their existence for general cosets that are not necessarily reductive.

This will be important, as the background found in [1, 2] are non-reductive cosets of the

Schrödinger algebra [4, 5]. In order to construct the metric on these cosets, the key ingre-

dient is the existence of a nondegenerate symmetric two-form, that is invariant under the

denominator group, as in [6]. We apply this general theory to spaces with Schrödinger sym-

metry in section 3 and to the dual of the Lifshitz fixed point in section 4, and demonstrate

how these are unique under certain physical assumptions on the subgroup.

– 1 –
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2 General considerations on cosets

2.1 Homogeneous spaces and invariant two-forms

Consider a coset (homogeneous space) M = G/H, where G is a Lie group and H is a Lie

subgroup of G. Let us denote the corresponding Lie algebras by g and h, respectively. For

each g ∈ g, let us denote the corresponding element of g/h by [g]. As a vector space, we

can always decompose

g = h ⊕ m , (2.1)

but there is an ambiguity in the choice of m. One can impose various compatibility con-

ditions of the Lie algebra structure with this linear space decomposition. The coset M is

called a reductive coset if there is a choice of m such that it is ad(h)-invariant, i.e.

[h,m] ⊂ m . (2.2)

If we impose in addition that

[m,m] ⊂ h , (2.3)

then M is a symmetric space, which is equivalent to the existence of a Z2 grading, such

that deg(h) = 0, deg(m) = 1, which is compatible with the Lie algebra structure.

We wish to construct a G-invariant metric on the homogenous space M . If g is semi-

simple, then the Killing form is non-degenerate and induces a G-invariant metric on M .

In the case of degenerate Killing form, the existence of such a G-invariant metric is not

guaranteed, however the following proposition gives a useful criterion:

Proposition ([7], Proposition X.3.1)

There is a one-to-one correspondence between G-invariant indefinite Riemannian metrics

G on M = G/H and Ad(H)-invariant non-degenerate symmetric bilinear forms Ω on g/h.

When H is connected, Ad(H)-invariance of Ω reduces to ad(h)-invariance, meaning that

Ω([h, [t1]], [t2]) + Ω([t1], [h, [t2]]) = 0 , (2.4)

for any h ∈ h, or equivalently, written in terms the structure constants of the Lie algebra,

Ω[m][n]f[k]p
[m] + Ω[k][m]f[n]p

[m] = 0 , (2.5)

where [m], [n] · · · denotes generators of m and p is an h-index. The structure constants

f[k]p
[m] are well-defined since h is a subalgebra and different representatives of the coset

element [k] give the same answer.

For our purposes, it is important to know the explicit relation between Ω and the

metric. Let us first define a metric on the identity element [e] = eH of M = G/H. We

want to define a metric G(X1,X2), where X1 and X2 are elements of TeM . Recall that

TeG = g and likewise, TeM = g/h. Therefore, X1 and X2 can be identified with elements

[t1] and [t2] of g/h, respectively. Under this identification, the explicit correspondence

between Ω and G is given by

G(X1,X2)[e] = G([t1], [t2])[e] = Ω([t1], [t2]) , t1 , t2 ∈ g . (2.6)

– 2 –
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Next we need to define a metric at an arbitrary point [g] of M = G/H. By the G-action

on the whole manifold, it is possible to translate the metric at the origin to any other point.

Choose an arbitrary representative g of [g]. Then left-multiplication by g−1 yields the map

Lg−1 : M → M . From this map we have an induced map

[Jg] := (Lg−1)∗ : T[g]M → T[e]M = g/h , (2.7)

which is a g/h-valued one-form on m. This is the Maurer-Cartan (MC) one-form. Similarly,

we can define Jg : TgG → TeG = g.

For two vector fields Y1, Y2 ∈ T[g]M , define the metric G(Y1, Y2)[g] at point [g] to be

G(Y1, Y2)[g] = G([Jg](Y1), [Jg ](Y2))[e] . (2.8)

When g is embedded into glN and g takes matrix values (which we will assume throughout

this paper), the MC one-form can be written as

[Jg] = [g−1dg] . (2.9)

In the discussion above we chose a particular representative g for [g]. If we choose another

representative gh with h ∈ H, we have

[Jgh] = [(gh)−1d(gh)] = [ad(h)(g−1dg)], (2.10)

where we have used the relation [h−1dh] = 0 as an element of g/h. This relation, together

with the definition of the metric in (2.8) and the H-invariance condition of (2.4), tells us

that the metric (2.8) is independent of the choice of the representative of [g]. This shows

the well-definedness of the metric.

Several comments are now in order:

1. The structure constants f[k]p
[m] we used above are in general different from the

structure constants fkp
m of g. They are equivalent only for reductive cosets (2.2).

2. Whenever g is semi-simple, the Killing form is non-degenerate and provides a natural

candidate for Ω. In many instances that will be of interest to us, the Killing form

is degenerate and the invariant non-degenerate two-form we use is different from the

Killing form.

3. Reductiveness is a natural notion for Riemannian cosets: if G is an isometry group

of a Riemannian metric on G/H and if H is connected, then G/H is automatically

reductive [7]. However, in Lorentzian signature this is in general not true and some of

the examples we discuss below are indeed non-reductive. We therefore do not impose

either condition (2.2) and (2.3) in the following discussions.

4. We emphasize again that in general neither existence nor uniqueness of such a two-

form Ω is guaranteed. For some coset G/H, Ω does not exist, and for others there

exists a family of such invariant two-forms, as we shall see exemplified below.

– 3 –
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5. A homogeneous space is mathematically defined as a space M with a transitive action

of G, meaning for any two points x, x′ of M we can find an element gx,x′ of G such

that gx,x′ .x = x′. From this condition it follows that M is written as a coset G/Gx,

where Gx is the stabilizer at point x. If we choose a different point x′, Gx′ and Gx

are in general different, but belong to the same conjugacy class. This means that

classification of cosets of the form G/H for a given G reduces to the two problems:

first to classify conjugacy classes of its subgroups and second to classify the non-

degenerate invariant two-forms of the subgroup.

In summary, a homogeneous space is characterized by the data (G,H,Ω), where Ω

is a h-invariant nondegenerate symmetric two-form specifying the G-invariant metric on

the coset space G/H. We will apply this general discussion to the cases of interest in the

context of non-relativistic conformal theories.

2.2 Explicit coordinate description of cosets

In the previous section, we used a coordinate invariant formalism. However, in order to

derive explicit forms of the metrics it is often useful to go to a particular coordinate frame.

For that purpose, we first fix a linear space decomposition (2.1), as well as a basis tm, tn, . . .

for h and tp, tq, . . . for m. Then we parametrize an element [g] ∈ G/H by

[g] = [exp(xmtm) exp(xntn) . . . ..] (modulo H). (2.11)

Of course, the expression in (2.11) is far from unique. For example, another possible

parametrization is

[g] =

[
exp

(
∑

m,n,..

xmtm

)]
. (2.12)

These are just different choices of coordinates on G/H and are related by coordinate

transformations. We will thus choose a convenient expression in each of the subsequent

discussions.

The MC one-form Jg = g−1dg can now be computed explicitly and decomposed ac-

cording to (2.1):

Jg = emtm + eptp. (2.13)

In this notation, the metric defined in (2.6), (2.8) is written as

G = Ωmnemen , (2.14)

namely, em are nothing but vielbeine, which get contracted with Ω. If we choose a different

representation gh for [g],

Jgh = Ad(h)(Jg), (2.15)

and the vielbeine mix among themselves, which shows that H is a symmetry of the

vielbeine.

– 4 –
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3 The Schrödinger algebra and cosets

3.1 The Schrödinger algebra

The Schrödinger algebra Schd in d + 1 dimensions [4, 5] has generators J ij (spatial ro-

tations), P i (spatial translations), H (Hamiltonian), Gi (Galileian boosts), D (dilatation)

and C (special conformal transformations). One can consider a central extension S̃chd of

this algebra by the mass operator M . The non-vanishing commutation relations are

[J ij , Jkl] = −δikJjl + δilJjk − δjlJ ik + δjkJ il ,

[J ij , P k] = −δikP j + δjkP i , [J ij , Gk] = −δikGj + δjkGi ,

[H,Gi] = P i , [D,Gi] = −Gi , [C,P i] = −Gi , [D,P i] = P i ,

[D,H] = 2H , [H,C] = −D , [D,C] = −2C , (3.1)

as well as the central extension [
P i, Gj

]
= δijM . (3.2)

This algebra is a subalgebra of conformal algebra, as was observed in [1, 8, 9].

3.2 Subalgebras and two-forms for d = 2

Let us consider the case d = 3. In this case, denoting J12 = J , the algebra is1

[J, P 1] = − P 2 , [J, P 2] =P 1 , [J,G1] = − G2 , [J,G2] =G1 ,

[H,Gi] =P i , [D,Gi] = − Gi , [C,P i] = − Gi , [D,P i] =P i ,

[D,H] =2H , [H,C] = − D , [D,C] = − 2C , [P i, Gj ] =δijM . (3.3)

For d = 2 there is unfortunately no satisfactory classification result for subalgebras.2 How-

ever, in addition to being a subalgebra, there are various physically motivated conditions,

that are naturally imposed upon h:

Assumption 1 (No translation condition). h does not contain P i.

This is natural because P i will be realized as infinitesimal translations in the geometry,

and should not be included in the stabilizer of a point on the homogeneous space G/H.

Another condition we impose is:

Assumption 2 (Lorentz subgroup condition). h contains J ij and Gi.

This condition is needed because we want to respect d-dimensional local Lorentz sym-

metry, which is crucial for the equivalence principle of general relativity.3

Although our methods apply to Schrödinger cosets in arbitrary dimensions, let us

concentrate on the case of dim G/H = 5 and dimH = 4. This is the case discussed recently

1We use the same symbole H to denote the Hamiltonian of Sch and the denominator subgroup of the

coset. We hope no confusion will arise.
2Conjugacy classes of subalgebras of the Schrödinger algebra are classified in [10].
3In the literature, stronger constraints are imposed on G [11], although for our purposes the Lorentz

subgroup condition is strong enough.

– 5 –
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in the literature, which in the context of the non-relativistic AdS/CFT correspondence is

conjectured to be dual to (2+1)-dimensional non-relativistic conformal field theories [1, 2].

If we impose the above two assumptions then h is spanned by J,G1, G2 and one more

generator, and the possible choices are

h(1) = 〈J,G1, G2, αC + βM + γD〉 (α 6= 0) ,

h(2) = 〈J,G1, G2, βM + γD〉 (β 6= 0) , (3.4)

h(3) = 〈J,G2, G2,D〉. (3.5)

The Ad(H)-invariant two-forms are obtained by solving for Ω in (2.5). This requires in

particular a specification of the basis of generators of the complement mi of each subalgebra.

Define

m(1) = 〈H,P 1, P 2,M,D〉 ,

m(2) = 〈H,P 1, P 2, C,D〉 ,

m(3) = 〈H,P 1, P 2, C,M〉 , (3.6)

Let us consider in detail the case h(1). Assuming that β 6= 0, the structure constants

relevant for (2.5) are

f[i]J
[j] =




0 0 0 0 0

0 0 +1 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 0 0




, f[i]αC+βM+γD
[j] =




−2γ 0 0 0 −α

0 −γ 0 0 0

0 0 −γ 0 0

0 0 0 0 0

0 0 0 2β 2γ




,

f[i]G1
[j] =




0 +1 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




, f[i]G2
[j] =




0 0 +1 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0




. (3.7)

Then solving for Ω in (2.5) yields for γ 6= 0 the resulting two-form is degenerate. For

α, β 6= 0 and γ = 0 there exists a non-degenerate two-form

Ω
(1)
[i][j] =




ΩHH 0 0 −ΩPP 0

0 ΩPP 0 0 0

0 0 ΩPP 0 0

−ΩPP 0 0 0 0

0 0 0 0 −2β
α
ΩPP




, α, β 6= 0 , γ = 0 . (3.8)

Parameterizing the coset elements as

g = exHHexMMexiP
i

exDD , (3.9)

then the vielbeine are given by

eH = e2xDdxH , eM = dxM , ei = exDdxi , eD = dxD . (3.10)

– 6 –



J
H
E
P
0
5
(
2
0
0
9
)
0
3
8

One may take ΩPP = 1 by using the overall scaling. Then σ := ΩHH can be freely chosen,

and by suitable coordinate transformation, we can set 2β/α = 1, which yields

ds2 = r2(−2dx+dx− + dxidxi) +
dr2

r2
− σr4(dx+)2, (3.11)

where we defined

exD = r, xH = x+, xM = x− . (3.12)

For σ = 0, this is the DLCQ of AdS5 [12, 13]. Although the metric looks locally the same as

that of AdS5, the presence of M , which commutes with all other generators, means that the

eigenvalue of M is quantized and the corresponding direction, namely the x+-direction, is

compactified. The deformation term proportional to σ is nothing but the deformation term

that was also observed to be present in [1, 2]. One way of understanding the appearance

of this deformation term is the null Melvin twist [14–16], but from the viewpoint of the

coset this is simply a deformation parameter of the invariant two-form.4

This coset, constructed from h(1) = {J,Gi, αC + βM} (α, β 6= 0) is an interesting

example of a non-reductive coset. The examples of non-reductive cosets are scarce in the

literature, and in four dimensions and less. A classification of Lorentzian non-reductive

homogeneous spaces in four and less dimensions appears in [18].

In a similar fashion, one can analyze the case of h(2) and h(3), and in both instances

we have verified the non-existence of a non-degenerate invariant two-forms. This implies

that under the above assumptions, the metric (3.11) is unique:

Uniqueness. Under the Assumptions 1 and 2 above, the 5d coset of S̃ch2 is unique, and

the metric is given by (3.11).

One way to escape this uniqueness theorem is to abandon assumption 2. Although in

such cases the rotation symmetry or Galilean boost symmetry is broken as a symmetry of

the local frames, they still exist as symmetries of the background, and these can potentially

become useful in the future study of non-relativistic AdS/CFT correspondence.

Relaxing assumption 2, there are two further choices for subalgebras:

h(4) = 〈G1, G2, C,D + αM〉 ,

h(5) = 〈H,C,D〉 ⊕ 〈αJ + βM〉 . (3.13)

Their complements can be chosen as

m(4) = 〈H,J, P 1, P 2,M〉 ,

m(5) = 〈P 1, P 2, G1, G2, J〉 , (3.14)

and then straightforward computation shows that for h(4) there do not exist any non-

degenerate two-forms. For h(5) with β 6= 0, we obtain

Ω = 2ΩP1,G2
(eP1

eG2
− eP2

eG1
) + ΩJJe2

J . (3.15)

4Applying this method to the pp-wave case [17], which is reductive, would also yield a deformation term.

However, this can be removed by a coordinate transformation and has no physical significance.

– 7 –
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Parameterizing the coset elements as

g = exiPieyiGiexJJ , (3.16)

the invariant one-forms are

eP1
= dx1 cosh xJ − dx2 sinhxJ , eP2

= dx1 sinhxJ + dx2 cosh xJ ,

eG1
= dy1 cosh xJ − dy2 sinh xJ , eG2

= dy1 sinhxJ + dy2 cosh xJ ,

eJ = −γ(dx1y1 + dx2y2) + dxJ , (3.17)

where γ = α
β
. Equations (3.15) and (3.17) yields a metric with Schrödinger symmetry:

ds2 = (dx1dy2 − dx2dy1) cosh 2xJ + σ(dxJ − γ(y1dx1 + y2dx2))
2 (3.18)

with σ 6= 0. Unfortunately, the signature of this spacetime is (2, 3), and as such does

not seem to be suitable for applications in AdS/CFT. Therefore, even by relaxing the

conditions in assumption 2, the background (3.11) seems to be unique.

3.3 The cases of z 6= 2

In a non-relativistic spacetime, we can scale time and space differently:

t → λzt, x → λx , (3.19)

where the parameter z is called the dynamical exponent. The discussion so far corresponds

to the case z = 2, and we are now going to consider the case with arbitrary dynamical

exponent z 6= 2. The algebra (which we call S̃chd,z) is given by

[J ij , Jkl] = −δikJjl + δilJjk − δjlJ ik + δjkJ il ,

[J ij , P k] = −δikP j + δjkP i , [J ij , Gk] = −δikGj + δjkGi ,

[H,Gi] = P i , [P i, Gj ] = δijM , [Dz,H] = zH ,

[Dz, P i] = P i , [Dz, Gi] = (1 − z)Gi , [Dz,M ] = (2 − z)M . (3.20)

Note that C is broken in the case with z 6= 2 .

Under the two assumptions of the previous section, a natural coset candidate is

h = {Gi, J ij} , m = {H,M,P i,Dz} . (3.21)

The invariant two-form associated to this choice is

Ω =




ΩHH −ΩPP 0 0 ΩHD

−ΩPP 0 0 0 0

0 0 ΩPP 0 0

0 0 0 ΩPP 0

ΩDH 0 0 0 ΩDD




. (3.22)

A group element of G/H is represented by g = exHHexM MexiP
i

exDDz

, and the vielbeine are

eH = ezxDdxH , eM = e(2−z)xDdxM , ei = exDdxi , eD = dxD . (3.23)

– 8 –



J
H
E
P
0
5
(
2
0
0
9
)
0
3
8

The metric is, up to coordinate transformations, given by

ds2 = −2eHeM + e2
i + e2

D + σe2
H

= r2(−2dx+dx− + dxidxi) +
dr2

r2
+ σr2z(dx+)2 , (3.24)

where we have identified as xH = x+, xM = x−, exD = r . When σ = 0, this again yields

the DLCQ of AdS, and σ is a deformation term [2] similar to the one discussed in the

previous section.

3.4 A comment on super-cosets

It would be interesting to consider the super-cosets related to non-relativistic AdS/CFT

backgrounds. The most interesting example of super coset is represented by a subalgebra

of psu(2,2|4) [8, 9]. This symmetry is known to be realized by the background consisting

of the metric of DLCQ of AdS5 times S5. That is, the x−-compactification breaks the

relativistic conformal symmetry to the Schrödinger and the 16 superconformal symmetries

are broken to 8.

For 24 supercharges there should be no deformation term [15].5 However, it seems

difficult to see this from the coset description, since the argument for the metric is unaltered.

This result is not so surprising since the on-shell condition of supergravity is not taken

into account, as well as the fact that the number of supersymmetries is not maximal. In

particular, the presence of the B-field, which breaks the symmetry of the metric, is not

included in our argument.

4 Gravity dual of Lifshitz fixed points and cosets

In the previous section we fix g to be S̃ch and considered various choices of subgroups h.

Consider now cosets, where g is a subalgebra of the Schrödinger algebra.

First we need to address the question of which subgroup of S̃ch we should take as

g. Let us first discuss the case z = 2. One possibility is to search for an interesting

subgroup which does not contain M . This is because in the discussion above M corre-

sponds to a x+-directions, and this is the origin of the difficulties associated with DLCQ

in the dual CFT.

Since [P i, Gj ] = δijM , we have to remove either P i or Gi. Since we want to keep

translation invariance, let us remove Gi. Then again since [C,P i] = Gi, we also need to

remove C. The the remaining generators H,D,P i, J span a subgroup of S̃ch. In the case

z 6= 2 (3.20), we can consider the same algebra. We thus consider g = 〈J ij , P i,H,Dz,M〉.

Consider the case d = 2, since higher dimensional case are similar. If we are going to

consider a 4d coset of g, h is one-dimensional and assumption 2 above uniquely determines

5In [19] a class of supersymmetric Schrödinger backgrounds is discussed, however, these are not homo-

geneous spaces.
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h to be h = 〈J ij〉.6 Then the relevant commutation relations are

[J, P 1] = −P 2 , [J, P 2] = P 1 , [Dz,H] = zH , [Dz, P i] = P i . (4.1)

Let m = 〈H,P 1, P 2,Dz〉. Then solving for (2.5) we obtain

Ω[i][j] =




ΩHH 0 0 ΩHD

0 ΩP 1P 1 0 0

0 0 ΩP 1P 1 0

ΩHD 0 0 ΩDD


 . (4.2)

In this case, all the deformation parameters in the invariant two-forms are removed by

coordinate transformations, and the resulting metric is

ds2 = −r2zdt2 + r2dx2
i +

dr2

r2
. (4.3)

This is precisely the background in [3], which is the candidate gravity dual of the Lifshitz

fixed point. Again, similar arguments as in the previous section seem to show that this is

the unique 4d coset of this group even when the assumption 2 is relaxed.
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